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Abstract This paper presents the efficient design methodology and applications of
reconfigurable multiplier blocks (ReMB). ReMB offers significant area, delay and
possibly power reduction in time-multiplexed implementation of multiple constant
multiplications in many application areas from fixed digital filters, adaptive filters,
and filter banks to DFT, FFT and DCT. The reader will be exposed to the fundamen-
tal principles of ReMB structures coupled with a novel algorithm for their design
as well as illustrative examples where appropriate that help the reader understand
the technique in action. The paper also looks into the pros and cons of deploying
the technique on standard FPGA platforms as well as discussing the effectiveness
of the ReMB approach in custom silicon realization by means of application exam-
ples. Area, delay and power (where possible) of the ReMB designs are compared to
standard implementations.

Keywords Reconfigurable multiplier blocks - Time-multiplexed multiple constant
multiplications - Reduced complexity fixed multipliers - Multiplier blocks

1 Introduction

The reconfigurable multiplier blocks (ReMB) technology has been developed to ef-
ficiently implement multiple constant multiplications in time-multiplexed filters and
filter banks. Its theory, applications and automated design methodology have been
described and discussed in this paper.
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Fig. 1 a Fully parallel FIR time delay and accumulate (TDA) filter implementation, b time-multiplexed
TDA filter implementation, ¢ time-multiplexed tapped delay line (TDL) filter implementation, d substitute
of general-purpose multiplier in (b) and (¢) as a multiplier block with a multiplexer

In performance critical systems, concurrency of the different modules is desired
to achieve higher throughput, resulting generally in the parallel implementation of
the filters as separate modules. This is also the case when power is of concern, as
the frequency of operation is directly proportional to the system’s dynamic power
consumption.

The primitive operator filter technique, as it was originally named in [3] (later,
the technique was named as multiplier blocks or multiple constant multiplications)
demonstrated its worth and performance mainly in the fully parallel digital filter im-
plementations where all coefficient-sample multiplications were performed concur-
rently as displayed in Fig. 1(a). Instead of implementing each of the constant multi-
plications separately, these techniques treat the collection altogether (as a multiplier
block) and realize the multiplication by means of adds, subtracts and shifts. The dot-
ted lines in Fig. 1(a) show where a multiplier block might be applied. There are
well-established techniques in the literature to deal with the redundancy that exists in
the implementation of multiple constant multiplications or multiplier blocks. These
techniques either use a numerical (graphical) approach where a group of coefficient
products are generated using common intermediate products [3—16] or the common
sub-expression elimination method that works on the signed digit (SD) representa-
tions of a group of coefficients [2-21]. Significant savings on area, speed, power and
complexity have been reported using these techniques [3—14].

Multiplier blocks.can.also.be used.as.asubstitute to a general-purpose multiplier
plus the coefficient memory in a time-multiplexed filter (Fig. 1(b) and (c)) as shown
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Fig. 2 Filter banks for multiplexed operation. a TDA form, b TDL form

in Fig. 1(d) for complexity and area reduction, as long as the total area of the multi-
plier block and the multiplexer is less than the area of the general-purpose multiplier
and the coefficient memory. Instead of addressing the coefficient memory to select a
different coefficient in Fig. 1(b) and (c), a different product is selected through the
multiplexer in Fig. 1(d). When applied to Fig. 1(b) and (c), only one of the products
that is generated by the multiplier block is required at any one time, even though the
multiplier block generates all the products. The unused products incur redundancy
and unnecessary power consumption.

The same kind of redundancy also occurs when using multiplier blocks in the
fully parallel implementation of filter banks as shown in Fig. 2(a) and (b). These
structures would be required for applications where the output of each filter in the
filter bank is processed sequentially, or where the choice of filtering can change in
time. The coefficients are marked as ¢} where m denotes the index of the selected
filter and p denotes the index of the coefficient or the filter tap in a particular filter.
A different filter in the filter bank is selected in time by using multiplexers, and the
products resulting from its coefficients are transferred to the delay line. The multiplier
blocks implemented either for all of the coefficients of a filter or the coefficients from
different filters of the filter bank with the same tap index would have redundancy in
time because only a part of the available outputs are used. This redundancy means
more power and area consumption.

Although it seems to be of no benefit due to the redundancies explained above,
the conceptual idea of a multiplier block being reconfigured to output a certain
coefficient-product at.each.cycle can.be. enhanced further to become very efficient for
the time-multiplexed and filter bank applications (i.e. time-multiplexed implementa-

BIRKHAUSER



796 Circuits Syst Signal Process (2007) 26: 793-827

tions of the FIR, IIR filters, filter banks, polyphase filters, adaptive filters, DCT, DFT
and FFT processors). This enhancement is achieved by using the reconfigurability
at all stages of a multiplier block by replacing the building blocks, i.e. adders, with
reconfigurable basic structures, which in simple terms consist of an adder and some
form of multiplexed inputs.

Reconfigurable multiplier blocks (ReMB) were studied in [4, 6, 7] during the past
few years. Its benefits in field programmable gate arrays (FPGA) and very large scale
integration (VLSI) implementations of different types of filters were demonstrated
in [4-7]. An algorithm was also developed in [6] to automate the ReMB design. De-
pending on the application it is capable of producing single input single output (SISO)
or single input multiple output (SIMO) ReMB designs that can be used in time-
multiplexed filters (Fig. 1(b) and (c)) or filter banks and polyphase filters (Fig. 2).

In a similar study [22], Turner reported significant savings in the area and delay
of some DSP blocks by using the reduced coefficient multiplier (RCM) that uses
the configurable resources of an FPGA. His design method [23, 24], which is based
on common sub-expression sharing, combines the SD-encoded coefficients on to the
look-up tables (LUT) that exist in FPGAs and can be used for SISO and multiple
input single output (MISO) blocks.

This paper describes the ReMB theory, structures and architecture for FPGA and
VLSI implementations in detail. The information already published in [4] and [5]
is extended significantly. The algorithm that was developed in [6] and partially pub-
lished in [8, 9] is also extended to cover more analysis and comments on its efficiency
and is improved for better performance. The description of the basic algorithm is in-
cluded in the paper to enhance the understanding of the subject.

Section 2 presents the theoretical and architectural description of ReMB. Section 3
discusses the implementation issues regarding ReMB structures. In this section par-
ticular attention has been paid to FPGA implementation and comparison with a prior
work in this field. Section 4 investigates different approaches to the ReMB design
problem and proposes a novel methodology. Section 5 establishes the foundations
of a novel numerical algorithm and describes new terminology. Section 6 presents a
novel ReMB design algorithm in detail with the aid of design examples. Section 7
includes further comments on the algorithm and its performance. Section 8§ presents
several design examples and detailed information on how the implementation is done,
as well giving area and delay comparisons of the proposed technique to other ap-
proaches. Section 9 concludes the paper.

2 ReMB Architecture
2.1 Basic Structure

Referring to Fig. 3(a), we define the generalized reconfigurable basic structure as an
adder represented by (e) (referring to an adder or a subtractor or an adder/subtractor),
with at least two inputs, at least one of which is connected to the output of a multi-
plexer. All the inputs of the multiplexer(s) and all the inputs of the adder/subtractor
are either the input signal to.the ReMB, or the output of a similar basic structure or a
shifted form of such signals. Zero can also be used as an input to the multiplexers.
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Fig. 3 a The general form of a basic structure, b basic structure with two 2-to-1 multiplexers connected
to a two input adder/subtractor whose 1st input can be added or subtracted (basic structure *2-2), ¢ basic
structure 1-4, d basic structure 1-2. In all cases the select inputs of the multiplexers are not shown for
clarity

A basic structure is named as ‘basic structure [*]m — [*]my — - - - — [*]m,,’ where
the adder/subtractor has n inputs and the size of the ith multiplexer is m;. The input
having the addition/subtraction functionality (if there is any) is distinguished by a “*’
prefix before m;.

Figure 3(b), (c) and (d) display examples of different basic structures. The
Add/Sub input of basic structure *2-2 in Fig. 3(b), which selects the mode of op-
eration, increases the reconfigurability of the structure even further as the input of
the 1st multiplexer can be added to or subtracted from the inputs of the 2nd multi-
plexer. The basic structure 1-2 displayed in Fig. 3(d) is the smallest possible basic
structure with a 2-to-1 multiplexer connected to a two input adder/subtractor and is
frequently used in the following text for explanation and design purposes, since its
implementation on FPGA has advantages as detailed in the next section.

The realization of an adder circuit can be achieved in several ways including
ripple-carry adders, carry-save adders and carry-look-ahead adders. For convenience
with the number representation, and for simplicity of the structure and dedicated cir-
cuitry in FPGAs, the designs given in this paper will employ ripple-carry adders.
However, the methodology is readily extendable to carry-save and carry-look-ahead
adders.

The basic structure produces several fundamentals or partial products by selecting
different inputs of the multiplexer(s), or by performing a different operation (i.e.,
adder/subtractor functionality). In a normal multiplier block, only one output would
be available from the adder.

2.2 Showing Design Details on Basic Structures

An example is given in Fig. 4(a) to demonstrate how the design details are deployed
on a basic structure within the actual signal flow graph (SFG) of a ReMB design.
As in the multiplier block SFG, the numbers on the edges denote the achieved mul-
tiples of the signals after shifting. Shifting can be realized by hardwiring and is free
as it is in multiplier blocks. When the vertex has adder/subtractor functionality, a
+/— is placed next to the input that is subtracted. The basic structure takes the in-
put X and produces the output Q. The § signal is used to select one of the inputs
to.the multiplexer.. The adder/subtractor.then processes the inputs and produces 4
different outputs according to the values of the signal S and adder/subtractor mode
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Fig. 4 a The basic structure 1-*2 with all of its inputs connected to X with the specified shift values,
b different output (Q) values as the select signals change

Fig. 5 All five different forms
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Fig. 6 Some of the sixty
topologically different graphs of
three interconnected basic

structure 1-2s

select signal, Add/Sub. The given basic structure 1-*2, generates a set of outputs
{5X, —3X,3X, —1X} as shown in Fig. 4(b) for the specified edge values. These out-
puts are available one at a time depending on the configuration of the basic structure
through the S and Add/Sub signals.

2.3 Interconnection of the Basic Structures

To demonstrate the structural varieties that can be achieved by the combination of the
basic structures, Fig. 5(a) to (e) shows all possible ways of interconnecting two basic
structure 1-2s as given in Fig. 3(d).

These graphs are topologically all different and can generate distinct combinations
of partial products that are not covered by any of the other graphs. When compared to
multiplier block graphs for two adders, the number of topologically different graphs
is raised from two to five for the smallest basic structure. This number would get
bigger for other basic structures such as basic structure 1-3, basic structure 1-4, or
basic structure 2-2.

Adding one more basic structure 1-2 which has at least one of its inputs connected
to the output of the graphs in Fig. 5 would result in sixty topologically different
graphs, some of which are shown in Fig. 6. As was the case for multiplier blocks,
the number of interconnected basic structures has a factorial effect on the number of
topologically different graphs that can be generated by different interconnections.

2.4 Output Set Size of ReMB

The output set size depends.on.the specification of the basic structure. In Fig. 4(a), the
basic structure 1-*2 has a two-input multiplexer and two different operations for the
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Fig. 7 Three basic structure
1-2s interconnected in a tree
form

@ (b) ©

2nd input of the adder/subtractor. As a result, the output set size is four. In the same
way, the basic structure *2-2 (Fig. 3(b)) has 8 different outputs, the basic structure 1-4
(Fig. 3(c)) has 4 different outputs and basic structure 1-2 (Fig. 3(d)) has two different
outputs.

The reconfigurability gained by multiplexers bigger than 2-to-1 would be obvious
when large designs with lots of coefficients are considered. By having a bigger output
set size at the early stages of a ReMB design, the subsequent basic structures, even if
they were small, would generate much larger sets of output values.

Let two basic structures, By and Bj, have N and M different outputs respectively.
For a ReMB design formed by interconnecting these two basic structures (i.e. all the
inputs of B are connected to the output of B; as in Fig. 5(a)), the maximum product
set size of the ReMB is calculated as N x M, since for each of the M different outputs
on By, there are N different inputs coming from Bj. Applying this principle would
reveal that the maximum number of outputs that can be achieved from the structures
in Fig. 5 is four except for Fig. 5(d), for which it is three. This occurs because for
one of the configurations of the second basic structure 1-2, it takes both of its inputs
directly from the input signal, disconnecting the first basic structure from the chain.

The output set size for three basic structure 1-2s (i.e. the structures in Fig. 6) in-
creases at most by two to become eight. For some graphs the output set size is five or
six depending on the interconnection of the basic structures. The factor of increase
is related to the number of inputs on the multiplexer. In other words, the maximum
output set size tends to increase exponentially as the number of interconnected basic
structures of the same type increases. This statement holds for basic structures inter-
connected as a chain (i.e. Fig. 6) and also as a tree. As an example, Fig. 7 shows three
basic structure 1-2s interconnected in a tree form. In Fig. 7(a), the output of the right-
most basic structure 1-2, in other words the second stage of the ReMB, would have
a maximum of eight different numbers since the non-multiplexed input of the basic
structure and the multiplexed inputs do not depend on each other and therefore gen-
erate four different numbers at each configuration of the basic structure. The output
set sizes for Fig. 7(b) and (c) are both six.

2.5 Depth of a ReMB Design

Although the output set sizes of the interconnected basic structures are similar for
chain and tree forms, the depth of the designs are different. In Fig. 6 a maximum of
eight numbers is achieved at a depth of three basic structures, whereas in Fig. 7 the
depth is two. This fact is important when deciding the maximum number of outputs
that can be achieved. at a given depth of basic structures. The tree form interconnec-
tions should be considered as well as the type of the basic structures employed.

BIRKHAUSER



800 Circuits Syst Signal Process (2007) 26: 793-827

cout
Muxcy

3 LUT o

BO BO
Bl Bl
S —— DJ_ A+BO fors=0 S
A AtBl forS=1(b) A

BO
Bl

S —ﬁ SD_I_ A+BO for S=0
A A-BI1 for S=1 (d)

Fig. 8 The LUT configurations for implementing basic structure 1-2

3 Implementation Issues

The ReMB method can be implemented in various media. It would especially suit
the goal of compact design in a fixed-resource reconfigurable environment such as
an FPGA, by using the already available resources most efficiently. For FPGAs with
4-input LUT such as Xilinx Virtex, it is an advantage that connecting a 2-to-1 mul-
tiplexer to one input of an adder/subtractor does not require any extra hardware
[23, 24]. This would let ReMB structures using basic structure 1-2s be very efficiently
implemented on a Virtex device.

Referring to the simplified schematic of a Virtex half-slice given in Fig. 8(a), the
dedicated circuitry for the carry logic and the addition is beneficial for implementing
ReMB. Three alternative LUT configurations to implement the basic structure 1-2
in a single half-slice are given in Fig. 8(b), (c) and (d). It should be noted that all
combinational logics that may be implemented in a LUT have the same delay and
area characteristics because they are implemented as truth tables in a memory. As ob-
served from the figure, a limited functionality of adder/subtractor is available. A sin-
gle select line controls both the multiplexer and the functionality of adder/subtractor
in Fig. 8(d). The displayed LUT configurations form an efficient subset basic struc-
ture 1-2s for FPGA implementation.

In [23, 24], a method was proposed to implement time-multiplexed multiple con-
stant multiplications on Virtex FPGAs efficiently, called RCM. This method aims to
design the multiplier by considering all of the LUT configurations as in Fig. 8 that
would be useful in an RCM implementation. To this extent, sixty-five different LUT
configurations were identified that are possibly useful in RCM implementation [23].
These configurations. (called. “cell definition” in [23]) for RCM designs can be clas-
sified as two main types. These types are shown in Fig. 9. Different cell definitions
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are achieved by changing the combinational logic implemented inside the LUT. In
Fig. 9(a), three signal sources (A, BO and B1) are connected to the LUT. The combi-
national circuit before the multiplexer can generate a variety of logical combinations
to feed the 2-to-1 multiplexer. There are a total of seven different cell definitions re-
ported of this type including all the LUT configurations given in Fig. 8. Four of these
seven cell definitions are also given in Fig. 9(a).

In Fig. 9(b), up to four different logical combinations of two input sources (A and
B) are entered to the 4-to-1 multiplexer. There are fifty-eight different cell definitions
of this type. Some example cell definitions of this type are shown in Fig. 9(b).

The cell definitions of the RCM can be considered as a subset of the basic structure
definitions of the ReMB that fits into Virtex FPGAs in the most efficient way.

Naturally, full custom VLSI implementation would have a larger degree of free-
dom to choose the type of basic structure and the adder/subtractor. Some of the basic
structures that are very efficient in an FPGA would not be as efficient for the VLSI
implementation. Any addition to the complexity of the basic structure has a hardware
cost, in terms of both area and delay.

The RTL level descriptions of six basic structures for VLSI implementation are
shown in Fig. 10. These basic structures all use a two-input adder, however sub-
tractors, half-adders, half-subtractors and higher valency adders are possible. The
hardware description language (HDL) description of these circuits may or may not
employ full adder cells depending on the optimization and cell parameters. Although
all of the focus is given to ripple-carry adders for the FPGAs because of the dedicated
fast logic in them, the VLSI implementations may consist of different adder architec-
tures like carry-save adders and carry-look ahead adders. In [1] and [14] carry-save
adders were investigated for use in multiplier blocks.

The functionality of the basic structure is greatly increased with the increased
number of inputs and select signals, however it has an opposite effect on the plac-
ing and routing. The wiring delay and capacitance would also increase. The more
configurable the basic structures are (e.g. Fig. 10(e) and (f)), the more difficult it is
to search the solution space effectively, especially for larger designs; therefore it is
more difficult to justify the added complexity of basic structures vs. the utilization of
the hardware involved in it.

Another difference between the FPGA and VLSI implementation is that the inputs
of the full adder cells will not be balanced due to the multiplexer added to one input
as shown in Fig. 10(a) and (b). This would possibly result in increased glitch activity
during addition. One way to overcome this is to add some logic that would have a
similar delay in front of both inputs. Figures 10(c) and (d) are examples of this.

All the cases discussed above are considered for implementation using readily
available standard cell libraries with common combinational logic gates. The story is
different if the basic structures are implemented at the transistor level as a single cell.
Some of the disadvantages can be eliminated by specially arranging the transistor
sizes. This approach would also decrease the area overhead by efficiently combining
all the functionality.

Some applications may require pipelining of the multiplier structure for reducing
critical path delay as well as power. Figure 11(a) shows the pipelined form of Fig. 5(a)
as an example. The delay element used here can be D-type latches or flip-flops. The
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Fig. 10 RTL views of some basic structures that can be constructed for VLSI ReMB designs
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Fig. 11 a Pipelined form of Fig. 5(a), b pipelining of a more complex ReMB design

dashed lines partition the graph to indicate where to put the delays. Each intersection
of the dashed line with an edge of the graph means that particular signal should be
pipelined before being processed by the adder/subtractor. It can also be useful albeit
expensive when pipelining ReMB structures with more complex interconnections of
basic structures as shown in Fig. 11(b).

The ReMB technique can also be effectively employed in newer FPGA series like
VirtexII and Virtex4 from Xilinx and Stratix II from Altera, although these devices
have built-in multiplier circuitry. These dedicated circuitry can increase the circuit
performance significantly when compared to the LUT implementations. However,
there are applications requiring more multiplication resources than the available ded-
icated multipliers, which is not rare in today’s very sophisticated processing circuitry.
In these circumstances, the ReMB technique can help to utilize the LUT for multiple
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constant multiplications and the dedicated multipliers can be used for truly general-
purpose multiplications.

4 Design Considerations

For a given coefficient set, designing a ReMB with the minimal number of basic
structures requires a well-defined procedure that can fully explore the capabilities of
a particular basic structure. The partial product space gets extremely large as the size
of the coefficient and/or coefficient set increases. The main problem is to identify
the common partial products or sub-expressions that can be mapped to a single basic
structure and use the minimum of such basic structures to build all the coefficient
values.

Both the numerical and the sub-expression sharing methods mentioned in the in-
troduction offer some advantages over the other for particular multiplier block appli-
cations. For example, the numerical approaches, which don’t depend on a particular
coefficient representation, offer solutions for SISO and SIMO type multiplier blocks,
whereas Hartley’s method is naturally suitable for SISO and MISO applications such
as TDL filters. Therefore, different methodologies would give better results for dif-
ferent ReMB applications [6].

4.1 Sub-expression Sharing Approach

The case of SISO and MISO designs has been investigated for the automated RCM
method in [23]. For a given set of SD-encoded coefficients, the RCM method finds
sub-expression groups that fit into one of the available cell definitions. It tries to
minimize the number of cells used in the design. The method is based on Hartley’s
common sub-expression elimination method [15]. As an example to explain the pro-
cedure of combining sub-expressions, consider two coefficient values 10 and 7. Let
their SD encoding be 1010 and 1001 respectively. Therefore, 10 can be generated
as 23 4+ 2! and 7 can be generated as 23 — 20, If 23 is labeled as A, 2! as BO and
29 as B1, a cell with the set of operations (A+B0, A—B1) can be used to imple-
ment these two coefficients. For coefficients with more non-zero terms, more cells
are required to cover all the sub-expressions. An automated way to build RCM has
been developed in [23] to search for all alternative sub-expression combinations, and
to minimize the cell usage. Although it uses all sixty-five cells, the ones with three
input sources (Fig. 9(a) with inputs A, BO and B1), are not fully explored since BO
and B1 are assumed to be coming from the same source (with different shift val-
ues). To give an analogy to ReMB, only three graphs given in Fig. 5(a), (b) and (c)
would be covered by the automated RCM design out of five topologically different
forms. The graphs whose multiplexer inputs are connected to different sources, i.e.
Fig. 5(d) and (e), which we call hybrid forms, would not be covered. For graphs with
more basic structures, the ratio of hybrid forms to the total number of graphs is much
higher (i.e. for three interconnected basic structures, there are forty-five hybrid forms
out of sixty topologically different graphs). Therefore, the automated RCM designs
only consider a smaller subset of the available solution space. To exploit the solution

BIRKHAUSER



Circuits Syst Signal Process (2007) 26: 793-827 805

Table 1 Set sizes of the

exhaustive search space for Structure Set size Percent of total
single and two interconnected
basic structures Figure 3(d) 471 N/A

Figure 5(a) 22754 3.8

Figure 5(b) 62003 10.6

Figure 5(c) 126850 21.6

Figure 5(d) 259295 44.4

Figure 5(e) 114335 19.6

Total of Figure 5 585237 N/A

space of a ReMB design effectively, hybrid forms need to be included in the design
methodology.

In [4], an exhaustive search was performed to find all the coefficient sets that can
be generated at the output of a single (Fig. 3(d)) and two interconnected basic struc-
ture 1-2s (Fig. 5) for the integer coefficient values up to a word-length of 10 bits. The
set of basic structures given in Fig. 8 was covered to be able to compare with the
RCM design. As observed in Table 1, the number of the coefficient sets dramatically
increased for two interconnected basic structures. The percentage column on Table 1
indicates the contribution of a particular interconnected form to the size of the coef-
ficient set space of two basic structures. Fig. 5(a), (b) and (c) provides 36% of the
total number of coefficient sets where only a single hybrid form contributes 44.4%.
As the number of basic structures increase, the percentage of the contribution by the
hybrid forms will become even greater. Therefore, it is very important to incorporate
to hybrid forms into the design methodology effectively.

4.2 Numerical Approach

As stated in [12], the RAG-n algorithm employs pre-stored MAG tables to get graphs
of coefficients that utilize the already existing fundamentals in the graph. A similar
approach for ReMB, utilizing an exhaustive search table, would lead to a better solu-
tion than trying to find groups of partial products that minimize the difference with
the required coefficients as is the case in the BHM approach [10], as the minimization
of the difference is a multi-dimensional and non-linear problem.

For a numerical ReMB design approach, the following factors need further atten-
tion when compared to the multiplier block design.

e The topology of the graph that produces a coefficient was not of importance since
the primary goal was to construct the coefficients by sharing intermediate results
or partial products [13]. Two different graphs generating the same coefficient were
not considered separately (although in [6] they have been investigated separately
for their transition activity).

e The even coefficient values were treated after finding their highest odd factor.

The basic structures are of primary importance, since the input value and the edge
value on.the common. input line (the input line without the multiplexer) and the op-
eration type of the basic structure affects the choice of the other inputs to the basic
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Fig. 12 An example multiplier
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structure. When an even coefficient is generated by first building its odd fundamental
at the output of an adder/subtractor together with some other coefficient, as shown in
Fig. 12, a separate multiplexer is required to select the output of the adder/subtractor
for two different coefficients. Instead, the even numbers can be handled like the odd
numbers and generated throughout the ReMB design.

The multiplier block algorithms built the coefficients in a given set one by one in
an order generally defined by their costs (minimum number of interconnected adders
to generate the coefficient [12]) or magnitudes. The coefficients having the same
costs still needed to be built in order, by making use of all the previously generated
numbers (both the fundamentals and the coefficients) in the multiplier block. The
multiple-output requirement of the multiplier block to be used in the transposed direct
form filters (the multiplier block in Fig. 1(d) without the multiplexer) was realized by
connecting the generated partial products or coefficients to the corresponding filter
taps.

The ReMB design for SIMO applications requires a different design approach than
the normal multiplier blocks to avoid underutilization of the basic structures at the
output stage of the ReMB (i.e. one of the output nodes is not produced using another
output node). If the ReMB is designed by starting from the input, the separation of
the group of fundamentals for the coefficient generation on different output nodes
would be very difficult to handle. This problem has not been handled effectively in
[23]. A detailed description of the problem and a solution method are presented in
the following sections for SIMO designs.

4.3 Design for Multiple Outputs

A typical time-multiplexed filter bank application, as shown in Fig. 2, would have
output nodes yi, ¥2, ..., yx of the same set size, i.e. the number of coefficients per
output node is the same, which we shall assume to be M. We further assume that
an output node y; is built using several interconnected basic structure 1-m and has
M different outputs. Since the upper bound of the output set size of a ReMB design
grows exponentially as the number of cascaded basic structures increases, any other
output node, say y,, built with the same type of basic structure cascaded to y; would
typically have the capacity of 2M outputs even though the number of coefficients for
this node remains the same.

One way to make sure that the structure is not underutilized and the output nodes
are treated independently is to start designing from the output nodes and build the
whole design.step.by.step.back to.the input, as each output node would be a different
starting point without any dependence on another.
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Fig. 13 A ReMB design with a
basic structure depth of three,
which can produce 128 different
coefficients at the output of
layer 3

Layer 1 Layer 2 : Layer 3

5 Fundamental Concepts for an Algorithm

Before defining the main algorithm, new terminology will be put forward to assist
explanation.

5.1 Basic Structure Depth

The depth and the number of basic structures of a ReMB design depend on the num-
ber of coefficients per output node. As shown in the previous section, eight different
numbers can be generated at a depth of two basic structure 1-2s. In the same way,
a ReMB design of depth three as shown in Fig. 13 would have the maximum 128
different number of outputs. The basic structures in Fig. 13 are placed in layers to
indicate the depth of that node. In general, the maximum number of outputs from
an output node is 2" where i is the basic structure depth and n; can be formulated
recursively for ReMB designs comprising basic structure 1-2s as follows:

ni=2mn;_1+1. (D

A different formula needs to be derived for a different basic structure topology.

Basic structure depth (bsd) is an initial and minimal indication of the depth of the
design. It is important to find out the bsd of an output node when designing a ReMB
starting from the outputs.

Consider a ReMB design with one output node with the fundamental set
{39,45,41,47,61,11,27,57,119}. All of the fundamentals are cost-2, i.e. each of
them requires a cascade of two adders to be generated. On the other hand, since there
are nine different numbers, the bsd of this node would be at least three if basic struc-
ture.1-2 were to.be employed, since.the. maximum number of outputs at depth-2 is
eight. In this example, the number of coefficients at the output node dictated the bsd.
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Fig. 14 A graph shows how a a C
coefficient is formed by making
use of two other numbers

b d

Now let’s consider the coefficient set {473, 181, 49}. The coefficient ‘49’ is a
cost-2 number whereas 473 and 181 are both cost-3. For a ReMB design of basic
structure 1-2s, the output set size of three is possible at a depth of two. However, this
time the bsd is dictated not by the output set size but by the cost of the coefficients,
which is three although some cost-3 coefficients can be generated at depth-2 (Fig. 7).
Choosing depth-3 (Fig. 6) guarantees that we cover all the different topologies that
generate cost-3 coefficients.

As arule, the bsd of an output node is the maximum of two values, the minimum
depth (depth,,;,) that can generate the required output set size (this value depends
on the type of the basic structure employed in the design) and the maximum of the
adder-costs of the coefficients (coef _cost;, i being the index of coefficient).

bsd = max (depthmin, max(coef_costi)) 2)

It is important to know that the bsd only tells about the topological minimum and
does not deal with the details of possible operations. Consider the set {9, 15}, which
includes two cost-1 numbers. The coefficient ‘9’ can be realized as (8 + 1), whereas
‘15’ is generated as (16 — 1). For an FPGA implementation with a restricted set of
basic structure 1-2s as given in Fig. 8, (8 + 1) and (16 — 1) cannot be combined on a
single basic structure as predicted by the bsd.

5.2 Graph Representation

A coefficient x can be represented on a graph that consists of a set of numbers
{a,b, c,d} as shown in Fig. 14. x, a, b, ¢ and d satisfy the following equation:

x=ac*bd, 3)

where ¢ and d are in the form of £2", r being a natural number for integer x.

This concept is also used in graphical representation and synthesis of multiplier
blocks [12].

For a predefined interval of {a, b, c, d}, the solution of (3) may yield many graphs
for a coefficient x. All such graphs of a coefficient collected in a table form the graph-
tables. These tables can serve as a way of implementing efficient ReMB designs in a
short time as will be explained later.

5.3 Node Definition

We also need a way to fully describe the design and configuration details of a ba-
sic structure, i.e. to show a combination of graphs using a particular basic structure
to.produce.a given coefficient set at different configurations. Such a description is
given in Fig. 15 showing a “node definition™ for the coefficient set {K, L, M} on
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Fig. 15 A node definition

includes all the details about the [t b t2]
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Fig. 16 A symbolic diagram ;

Layer 0 Layer 1 Layer 2 i Layer 3

for SIMO ReMB consisting of
basic structure 1-2

x(k)

I

a basic structure 1-2. Here, A, B and B; are the inputs of the basic structure and
¢, di, and d, are the edge values. Each coefficient is generated at a different con-
figuration of the set [19, 11, ©2]. [ak,ar,am], b1k, X, bim] and [X, by, X] are the
vectors of fundamentals—building numbers—corresponding to different configura-
tion states. The ‘X’ (don’t care) in [b1k, X, b1 )] means the multiplexer does not use
B for configuration #; but rather uses by; from Bj to produce the coefficient L. At
configuration f, this node generates K as K =ax X ¢+ b1x X dj.

6 Description of the Algorithm

Figure 16 shows the symbolic diagram of a SIMO ReMB design. There are three
output nodes, yi, y2, and y3. As observed from the figure, all output nodes are at
depth-3. This design is a typical example that can be generated by the algorithm
explained below.

The design is partitioned into smaller units by layers to be systematically handled
by the algorithm. Each layer has output nodes and fundamental sets that feed the
basic structures. For an intermediate layer, the fundamental sets are the output nodes
generated in the preceding layers. For the first layer, the fundamental set is formed
of either the input signal, which is shown as ‘1’ or the logical zero, which is ‘0’.
Starting from the last layer of the design, the algorithm recursively calls itself at each
layer until the fundamental sets are formed out of only ‘1’s and ‘0’s. At each call,
the algorithm takes a number of coefficient sets or output nodes as inputs and creates
node definitions that can produce the required coefficient sets. The fundamental sets
that are required. by these node definitions are designed by the following recursive
calls of the algorithm.
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Fig. 17 A TDA filter bank consisting of three filters F 1 F2, and F3. The dotted block can be replaced
by a SIMO ReMB design

To make sure that the fundamental sets converge to ‘1°, the graphs of the coeffi-
cients should be combined in such a way that the bsd of the resulting fundamental set
vectors at A, B and B; should be less than the bsd of the coefficient set. To satisfy
this condition, the number of different fundamentals (fundamental set size) at an in-
put and the cost of the fundamentals have to be reduced with the chosen graphs. For
example, if the coefficient set has a bsd of three, the fundamentals at the input sets
should be at most cost-2, and the fundamental set sizes can be at most eight (i.e. the
maximum number of outputs allowed at that particular depth, see (1)). The node de-
finitions satisfying these requirements can be found by processing the combinations
of graphs that exist in the graph-tables.

In the initialization step the coefficient sets defined for each output node are
processed to identify the double entries and any negative coefficients. To better ex-
plain the format of the coefficient sets, consider a typical SIMO ReMB design that
can be replaced with the multiplications taking place in a TDA filter bank application
as shown in Fig. 17. The filter bank has three different filters, F 1 F2 and F3 each
of which consists of four coefficients. Therefore there are four outputs of the ReMB
design that would replace the block shown with dotted lines. Each output is assigned
with an array of coefficients v; to v4. Each of these arrays or the output node has
three coefficients, each of which has to be produced in a different configuration of
the ReMB design. These arrays can include the same number as a coefficient for two
or more distinct filters.

Figure 18 shows the abstract level flow diagram of the algorithm. Each step in the
diagram is detailed below with the help of design examples.

Only positive coefficients are generated in the current form of the algorithm. The
negative sign.needs.to.-be handled outside the ReMB block by modifying the pro-
ceeding design unit, i.e. using a subtractor instead of an adder at the output of the
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Fig. 18 The flow diagram of —
the proposed ReMB algorithm < Initialize >

Calculate the basic-structure-depth of the
output nodes.

v

I Build the graph tables for each coefficient I

Find possible node-definitions for all output nodes by
combining the graphs in the graph tables on basic structures.

v

Give a score to each node-definition according to the
utilization of the basic structure and the formation of
its fundamental sets.

v

Starting with the highest scored node definition, select a
Inode-definition for each node such that the commonality of the
fundamental sets are maximized.

Output the
node-definitions

Recursively call the algorithm to
design the preceding layers.

multiplier. The super table holding all the graphs of all numbers up to a limit (for
example, for 10-bit coefficients, the limit is 512) is utilized to gather the graphs of
the coefficients faster during the algorithm run, as we are merely reading the graph
from a pre-generated and stored table.

To explain the rest of the algorithm steps, we first build a ReMB design with single
output node and then extend it to a design with multiple output nodes.

Consider the coefficient set {39, 45, 41, 47} which has four configuration stages.
After the algorithm initializes, the bsd of the output node needs to be calculated.

By using (2), the bsd can be calculated as 2. Next, the graph tables are formed
for each coefficient. All the graphs of a coefficient that are stored in a super table are
checked for the costs of their fundamentals—coefficient cost of a and b in Fig. 19(a)
should be smaller than the bsd—and the magnitudes of the fundamentals—again, a
and b should be smaller than a limit number, which is defined as the smallest power
of two that is larger than all the coefficients in the node vector (for the current design,
the limit number is 64). Figure 20 displays the graph tables generated for the given
coefficients. The number of graphs is reduced to avoid unnecessary complexity in the
explanation of the following steps.

Before building the node definitions, we form an index space that consists of the
indexes of the graphs with matching edge values. Table 2 shows the index space
for the graph-tables in Fig. 20 for node definitions on a basic structure 1-2 as given
in Fig. 19(b). The graphs. of the first coefficient in the coefficient set are compared
with the graphs of the other coefficients to find out whether they can be combined.
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Fig. 19 a An example graph, c
b the basic structure 1-2 used in c a
the algorithm to generate the a
index space b, —L
b d L b
(a) (b)
index | 1% coef. 39) | 2" coef.(45) | 3" coef. (41) | 4™ coef. (47)
1 i 3 51 9 =
58 N9 | 318 9_4 » | 7S ®
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3.8 » | 72 » | 3-8 » | 52

Fig. 20 The graph-tables generated for the coefficient set {39, 45, 41, 47}. The number of possible graphs
is reduced for easier explanation of the algorithm

The indexes are displayed in two separate columns per coefficient depending on the
number of matching edges with the reference graph.

Each node definition will have one graph per coefficient. A node definition of
the current design would have four indexes from (1st), (2nd or 3rd), (4th or 5th),
(6th or 7th) columns on any given row.

Figure 21 demonstrates how a node definition is formed out of the index space.
For each coefficient, the first index on the first row of Table 2 is chosen, and their
corresponding graphs are combined. The first graph is placed on the inputs a and b
of the basic structure 1-2 for coefficient ‘39’ in configuration state fy. The unused
input b; is assigned an ‘X’ as a “don’t care”. The second graph uses the other avail-
able input b, since one of its edge values is different from the edge values of the first
graph. In the same way the third and the fourth graphs are added for the remaining
coefficients ‘41’ and ‘47’ respectively. Each graph is placed at a different configura-
tion state of the node definition (fp—¢3). The algorithm systematically scans through
all the indexes. to find. all possible node definitions. During and after this process, all
node definitions are examined for two criteria:
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Table 2 The index space for the graph tables given in Fig. 20

Graph index for the Graph inde?( for the Graph inde.x for the Graph inde.x for the
. 2nd coefficient (45) 3rd coefficient (41) 4th coefficient (47)
1st coefficient (39)
c&d ¢ same, c&d ¢ same, c&d ¢ same,
same d different same d different same d different
1 1 1,4 3 [ 1 3
2 3,6 2,5 4 1,2,5,6 5,6 2,4
3 [ 1,4 1 [1 1 3
4 2 3,56 5,6 1,2,3 1] 2,4,5,6
5 3,6 2,5 4 1,2,5,6 5,6 2,4
6 2 3,5,6 5,6 1,2,3 [ 2,4,5,6

e The usage of the basic structure (whether all the inputs on the basic structure are
used or not)
e The bsd of the fundamental sets on the node definition are tested.

If the bsd of the fundamental sets becomes equal to larger than the current bsd, the
generated node definition is discarded.

The node definition generated in Fig. 21 would have been discarded since one of
its fundamental sets {1, 3, 15, 9} would have a bsd of two after the second step, which
is the same as the current bsd.

Each of the valid node definitions is given a score by the use of a score cost func-
tion (SCF), which can depend on several parameters. The priorities of the algorithm
can be adapted to new design conditions by simply changing the SCF.

A typical SCF can employ the following parameters:

° ol.2: The variance of the cost of the fundamentals in the input sets a, by and b», i
being the input set index.

e A;: Number of different fundamentals in an input set, and

e x1;: The existence of input sets comprising only ‘1’s as a fundamental.

crl.z is zero when the costs of the fundamentals in the set are all the same, and

increases as the cost changes. Minimal variance of the fundamental costs is desired
to effectively generate each coefficient at its minimal cost and not more.

A; will be maximum when it is equal to the output set size defined by the bsd (Ipsq)
to increase the utilization of the basic structures.

x1; is either zero or one depending on having a fundamental set comprising only
‘1’. As ‘1’ does not require a basic structure to be generated, having fundamental sets
comprising only ‘1’ is desirable.

These parameters can be put into a generalized SCF as follows:

score = Z w?(wi1 x x1; —w? x o —w? x Apsa — Ai)), 4)

1

where wil—wi3 are weights for each parameter specified above, and w? is the weight

for different input.sets.. These weights.can, be changed to prioritize any of the para-
meters. Furthermore, new parameters can be added to the function very easily. For
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example the variance of the magnitudes of the numbers in a set can be another small
priority parameter. If there is more than one type of basic structure used in the algo-
rithm, the SCF can prioritize one among the others by having another parameter.

The valid node definitions in our example design are scored with the weights
w; —wi3 as {1,2, 1, —1} and displayed in descending order of their score in Fig. 22.
The weights are chosen to reveal more about the functioning of the algorithm in our
design example. They are not necessarily optimal values for an efficient design.

Out of the ten available node definitions, the highest scored one will be chosen as
the solution in the following steps. In general, if no node definitions can be built for
any of the output nodes, we cannot proceed any further to the solution. If the algo-
rithm exits during its top-level call, a higher bsd should be forced into the algorithm
for searching the solution in a bigger graph space. If this situation occurs during one
of the recursive calls in an intermediate layer, the algorithm overcomes the problem
by automatically changing the proposed solution for the initiating layer and recur-
sively calls the algorithm with the new fundamental sets of the next available node
definition.

In the example explained until now, there is only one node vector, hence the proce-
dure involving two or more nodes is not required. The highest scored node definition
(the top-left node in Fig. 22) is chosen as the winner and its fundamental sets {31, 33},
{7} and {1} are defined as the new inputs of the algorithm for the next recursive call.

The algorithm classifies the fundamental sets that have to be designed in the pre-
ceding layers of the design (the following recursive runs of the algorithm) in two
groups. The fundamental sets that have to be generated in the preceding layer are
defined as the new output nodes of the preceding layer, and the sets that will be gen-
erated in the deeper layers are defined as the feed-through sets. This decision is based
on the bsd of the fundamental sets. Feed-through sets are not designed until the al-
gorithm reaches down to their bsd in the design. Let’s assume that a node definition
in layer R required a fundamental set F with a bsd of (R-3). The design of set F
wouldn’t be considered in layers (R-1) and (R-2). However, because the set F is al-
ready required by a node definition in the design and necessarily would be designed
in layer (R-3), the algorithm prioritizes the node definitions that can make use of set
F in the layer (R-1) and (R-2) to minimize the number of nodes in the design.

In our current design example, {31, 33} and {7} have a bsd of one, and hence they
are assigned as output nodes in the next recursive run of the algorithm. The set {1}
has a bsd of zero, therefore it is assigned as a feed-through set although really no
design is needed for it.

The next run of the algorithm for a bsd of one concludes the design since the
fundamental sets of this layer consist of ‘1’ only. The resulting ReMB structure is
given in Fig. 23. Since the set {7} has a single number, a basic structure is not required
and 7 is formed with only a subtractor. The resulting design is composed of two
basic structures and a subtractor as opposed to five adders and a multiplexer stage
if designed as a multiplier block by the RAG-n algorithm [12]. In a Virtex FPGA
implementation it would occupy three half-slices per bit of data word-length where
as the RAG-n design would occupy seven half-slices per bit. Figure 23 does not show
all the details about the configuration states and the select signals in order to simply
show the complexity and the signal flow of the design.

0
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Fig. 23 The ReMB generated

by the algorithm for the set Layer 0 tayer 1 Layer 2
{39, 45,41, 47} Ji
g ) BEPEL I
- 31
32 ) / 8 39
gamn) Ry
-1 / 47
/"’
8
Fig. 24 a The winner node [toiti}tit]
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Now, we extend our initial example to include one more coefficient set
{61, 11, 27,57} to show how the algorithm handles multiple outputs. The coefficients
in the set are ordered according to the configuration state required, i.e. ‘61° and ‘39’
will be produced at the same time.

The bsd of this second node is two. The algorithm generates graph-tables, index
space and node definitions for both nodes independently. Therefore Fig. 20, Table 2
and Fig. 22 remain the same for the first node.

After generating the scored node definitions for all output nodes, the algorithm
picks the highest scored node definition to start forming the design. If there was a
feed-through set declared in the algorithm call, then the highest scored node defin-
ition, which has the feed-through vector as one of the fundamental sets, would be
selected. The highest scored node in our design example is the first node definition
of the first node given in Fig. 22 with the input vectors [31 31 33 33], [X7X7] and
[1X1X]. The fundamental set [1X1X] can be turned into [1 1 1 1] since the input
signal would be available all the time.

We then search the fundamental vectors of the winning node definition on the
generated node definitions of the other output nodes. The node definition having the
highest number of matching input vectors and the highest score is then selected as
the solution for that particular node. This process is repeated until all the nodes are
covered by the set of node definitions.

The search of fundamental vectors is a complex task that checks the ‘X’ states
of the fundamental set vectors and identifies whether the vectors are subsets of one
another to minimize the number of fundamental sets. For our design, the highest
scored node definition with matching input vectors for the second node is shown in
Fig. 24(a) and is designated as the solution of the second node. The vector [1 X 1X] is
a subset of [1 1 1 1]. Moreover, the input vector [ X7X 7] for the first node definition
is covered by the new vector [37 7 7].

The input vectors required for the 2nd layer of the design (since the bsd is two
and. possible solutions.are found. for the output nodes) are given in Fig. 24(b). Their
corresponding fundamental sets {31, 33}, {3, 7} and {9, 17} have to be designed in the

s
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Fig. 25 The ReMB design 0 1
generated by the algorithm for Layer Layer Layer 2
the coefficient sets i
{39, 45, 41,47} and 33 1
{61,11,27,57) = 31 39
32 8 45
/ 2 41
_1 A 47
4 7 -1
8 64 61
/ 2 11
1 9 27
8 17 57
16

consecutive call of the algorithm. Therefore, these sets are defined as output nodes,
and {1} is again defined as a feed-through set for the next run.

Figure 25 shows the resulting ReMB design. It consists of two more basic struc-
tures than the design given in Fig. 23, which contained a single output node. The
algorithm efficiently added the second node by making use of the fundamentals that
were already required for the first node.

The design generated by the algorithm is readily translatable to an HDL definition
for implementation. Its output provides all the configuration details for the control of
select inputs of the multiplexers.

The algorithm has been implemented in MATLAB because of its flexibility in
handling arrays and matrices.

7 Comments on the Algorithm
7.1 Effect of Super Table, and the Negative Fundamentals

The efficiency of the algorithm greatly depends on the set of graphs available in the
super table. The availability of graphs with a variety of fundamentals and edge values
is crucial to increasing the number of possible node definitions for a given coefficient
set. The more alternative node definitions that exist for a node, the more probable it
is that common input vectors will be found for a multiple output design. Therefore, it
is essential to have the maximum coverage of graphs for any given number.

Inclusion of the graphs of negative numbers would increase the design efficiency
and can reduce the number of basic structures required for a design. As an exam-
ple, consider the run of the coefficients with a super table consisting of only graphs
of positive numbers for the coefficient set {137, 119, 113, 143}. When the algorithm
builds the node definitions for this set, the highest scored node definition includes an
input vector of {9, 15} as shown in Fig. 26. However, {9, 15} cannot be fit onto a ba-
sic structure at a bsd.of one. Therefore the algorithm picks up another node definition
from the available ones and generates the design with four basic structures.
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Fig. 26 The highest scored

node definition for the [t t
coefficient set [T i1
{137,119, 113, 143} b % [to t 6 t]
[137:119:113:143]
[Xi9 o ’
Fig. 27 An alternative node
definition to Fig. 26 utilizing [to
graphs of negative numbers [1
[9 )
13:143]
X :

Fig. 28 The ReMB design for
the coefficient set

{137,119, 113, 143} utilizing
negative numbers in the graph
generation

137
119
113
» 143

If the graphs of negative numbers are considered, the size of the design shrinks
by half for the given coefficient set. As observed on Fig. 26, the edge values of the
multiplexed inputs are the negative of each other. Therefore instead of having the
input value of 15, we can easily use —15 on the same basic structure to output the
same coefficients. The resulting node definition would be as shown in Fig. 27. The
advantage we get from this node definition is that it is possible to put 9 and —15 on
the same basic structure for a bsd of one, leading to the successful generation of a
ReMB design with a total of two basic structures as displayed in Fig. 28.

Another issue related to the inclusion of negative numbers into the generation of
ReMB designs is that it reduces the necessity to correct the sign of the output for the
negative coefficients at the proceeding stages of the actual top-level circuit.

7.2 Application of the Algorithm to the Traditional Multiplier Blocks

The algorithm was originally developed to handle SIMO ReMB designs. It takes
multiple coefficient sets and multiple feed-through sets as inputs. When there is only
one coefficient at each node, the design is a traditional multiplier block. Therefore it
can be used as a traditional multiplier block design algorithm. Instead of using basic
structures, the algorithm uses adders and subtractors to build the design when there
is one coefficient per node. The bsd defines the depth of the adders in this case.

The algorithm described in this paper checks the minimum cost of each coefficient
and tries to generate them at their minimal adder cost. Since it builds all the coeffi-
cients.of the same cost.concurrently, it tends to generate them by using fundamentals
with lower cost only. By default, it acts like the step-limiting algorithms [16] where
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the number of cascade stages of adders (adder-cost) can be defined. The bsd can be
forced on the algorithm to tell the number of steps (number of cascaded adders),
however in its default form, it produces designs with a minimum number of steps.
Therefore, it is expected to reduce the transition activity of the design by minimiz-
ing the paths that the glitches propagate, hence minimizing the power consumption.
On the other hand, the number of adders used in the design can be more than the
design generated by RAG-n or BHM. This is because the score function is suited for
distinguishing node definitions having multiple coefficients per node. For multiplier
block generation, a pre-defined number of different designs can be compared to find
the one having the least number of adders.

The feed-through input of the algorithm facilitates the forcing of any intermediate
fundamentals to the designs whereby a solution using a certain fundamental vector
would be prioritized.

7.3 Run-Time and Intelligence Improvements to the Fully Exhaustive Search
of a Solution

The selection of a node definition as a solution depends on its score. Starting with the
highest scored node definition and building the rest of the design on the basis of the
input vectors of the highest scored node definition may lead to sub-optimal designs
in terms of the number of basic structures. This is because there is no guarantee that
there will be node definitions for other nodes such that their input vectors match with
the ones that are already selected as a solution.

Therefore, an exhaustive search of designs that can be generated by using differ-
ent node definitions would be required to find the minimum sized design. However,
generating all the possible designs is very inefficient if not impossible when there are
many alternative node definitions and/or many nodes. Moreover, the probability of
finding the minimum sized design by starting from a highly scored node definition is
more than that for a lower scored node definition due to the nature of the score func-
tion. It is therefore logical to generate a pre-defined number of alternative designs
and pick the minimum sized one.

The implemented algorithm already collects a pre-defined number of highly
scored node definitions among all nodes into a start-up table to facilitate the gen-
eration of an alternative design when a recursive run of the algorithm fails to find a
solution. Moreover, it generates a pre-defined number of solutions and outputs the
minimal design out of this collection.

Most of the algorithm run-time is spent on searching and collecting node defini-
tions. It is possible to restrict it to a certain percentage of the search space or certain
amount of node definitions; however, it decreases the possibility of identifying an op-
timal solution. The search space gets factorially bigger as the coefficient size and set
size increase. However, by checking the validity of the fundamental sets while gener-
ating a node definition and skipping the generation whenever it becomes invalid, we
were further able to decrease the unnecessary search time.

Due to the nature of the node definition search, bigger graph spaces can be
searched. concurrently by many processors and then the solutions can be combined
and compared.
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Fig. 29 Recursive part of a i
Goertzel DCT implementation —>
(-1)k*in

8 Applications

The ReMB technique can be applied to any time-multiplexed multiple-constant-
multiplication problem. In this section, we will give two examples for its application
to a DCT processor [7] and FIR filter implementation [5, 19] to demonstrate its effec-
tiveness both on the FPGA and ASIC platforms. Both examples require single output
ReMB structures.

8.1 DCT

A recursive loop of a Goertzel filter that computes an 8-point DCT for video process-
ing is shown in Fig. 29 [7]. In this filter, the multiplier has 8 different coefficient
values, characterized as

2Bk =2cos(kr/8) fork €0, 7], (@)

where k is the DCT coefficient index. For a 12-bit coefficient word-length, the g val-
ues can be found as {2048, 1892, 1448, 784, 0, —784, —1448, —1892} by converting
the quantized decimal coefficients from (5) to integers. As observed from the coeffi-
cient set, the coefficient values for k =5, 6 and 7 are the negatives of the coefficients
for k =3, 2 and 1 respectively. It is therefore possible to implement a ReMB that can
generate the multiplications for k € [0, 3] and its output can be negated afterward at
the next adder for k € [5, 7]. The output of the ReMB is shifted right by 10 bits to
make the multiplication correct with respect to the decimal coefficient.

Figure 30 shows the ReMB design. It consists of four basic structures that can
be efficiently implemented on a Virtex FPGA. This design is highly efficient when
compared to a classical multiplier block implementation by the RAG-n algorithm
[12], which is known to give the smallest area. It occupies seven adders and extra
multiplexer stages at the output as shown in Fig. 31.

A more detailed form of the area and delay comparison of the actual circuit im-
plementations reveals more about the efficiency of the ReMB in Table 3. Assuming
an input data word-length of 16-bits, it would cost 221 LUT to use a general purpose
multiplier together with a coefficient store. The conventional multiplier block given
in Fig. 31 reduced the multiplier area by 21% (48 LUT) to 173 LUT. On the other
hand, our ReMB design occupies only 91 LUT for the same word-length achieving a
massive 58% saving. The delay values reveal that although the multiplier block im-
plementation.is.smaller, it has.a higher delay. The ReMB design demonstrated the
smallest delay amongst the three implementations.
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Fig. 30 ReMB design of the
DCT loop multiplier. The italic
numbers are the partial products
generated at each node

128

@

Fig. 31 The corresponding

multiplier block design of the 312 \5]3
ReMB block given in Fig. 30
2048
4

1892
— 784
1448
\ /'\ /?81 /(
Select
Table 3 Area comparison of - —
the Virtex FPGA Designs General-purpose Multiplier block ReMB
implementations of different multiplier with produced by the design
multiplier designs for the DCT coefficient store RAG-n algorithm
Area (LUT) 221 173 91
Delay (ns) 10.3 10.94 7.61

8.2 A Half-Band FIR Filter

A 32-tap half-band FIR filter was implemented using ReMB in [5]. The coefficients of
a half-band filter are symmetric and every other coefficient is zero except the middle
coefficient. The coefficient word-length was chosen to be 10 bits and the data word-
length was assumed to be 16 bits for the fixed-point implementation.

Three filter implementations were realized in [5] to compare conventional ap-
proaches with the ReMB technique. Figure 32(a) shows one of the reference designs,
a typical time-multiplexed TDL filter architecture. All the coefficients are stored in a
coefficient memory and the incoming input samples are stored in an input memory.
With the help of a simple controller one filter tap per cycle is processed.

Figure 32(b) shows the proposed implementation of the filter using ReMB. The
coefficient store and the general-purpose multiplier in Fig. 32(a) are replaced with a
ReMB structure that performs multiplication for the distinct coefficients stored in the
coefficient memory (only the absolute values of the distinct non-zero coefficients are
needed). The controller in this case needs to be more intelligent to address the correct
coefficient for each tap. With the help of a multiplexer either the coefficient-product
or its complement or zero is accumulated at each cycle.
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Fig. 32 a Time-multiplexed TDL structure implemented as reference filter, b the proposed filter imple-
mentation using ReMB technique
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Fig. 33 The ReMB design used in the proposed filter implementation. Din is the input signal to the block

There were nine quantized distinct numbers in the coefficient set: 256, 162, —50,
26, —15,8, —4,2, —1. Figure 33 shows two ReMB designs used in the filter. Fig-
ure 33(a) is generated by the algorithm described in this paper in [5]. It comprises
seven basic structure 1-2s. Figure 33(b) is designed in [19] specifically for efficient
custom VLSI implementation. The ‘R’ letter on the multiplexers indicates that they
can be reset to ‘0’ if none of the inputs.are desired. This design uses two basic struc-
tures 2-2 and an adder.
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Table 4 Select values required - - ;
for some coefficients Coef. Select signals for each basic structure

BSO BS1 BS2 BS3 BS4 BS5 BS6

256 0
162 1
50 1

1

0
1
1
26 0

S O O =
- o X M
oS O O O
- - o o
S O O O

Select signals were not shown on the ReMB diagrams for simplicity. Table 4 dis-
plays the values of select signals in Fig. 33(a) to generate some of the coefficients.
They were controlled by the main controller in the same way as the coefficient mem-
ory was addressed in Fig. 32(a). In the table, basic structures are indexed from BSO to
BS6 starting from the top of layer 1 downward and then layer 2 and layer 3. The se-
lect value of ‘0’ means that the top branch of the multiplexer is selected. An ‘X’ value
means that particular basic structure is not involved in generating the coefficient.

The filters given in Fig. 32 were implemented in both FPGA and VLSI [5] where
Fig. 32(b) employed the design of Fig. 33(a). The FPGA implementations were real-
ized on a Virtex FPGA. Area and delay figures for the FPGA designs were obtained
after place and route (PAR).

The ASIC implementation targeted the UMC 0.18um CMOS technology and was
not placed and routed. The results reported were obtained after synthesis.

Table 5 displays the area and delay figures for all implementations. The coeffi-
cient memory and input memory were not included in the area figures. No pipelining
has been applied to the filters. Critical path delays are reported for the full combi-
national logic in the multiply-and-accumulate circuits. An extended version of this
comparison with more designs can be found in [5].

The multiplexer in the multiply-and-accumulate path in Fig. 32(b) only contributes
to the area for the ASIC implementations. For the Virtex implementation, the com-
ponents inside the dashed line in Fig. 32(b) were fitted into one LUT, which in turn
means the multiplexer comes free.

The area savings achieved by the ReMB technique for the FPGA and the ASIC
implementations of this particular example is around 20% compared to the conven-
tional reference design. The ReMB block given in Fig. 33 is not optimal in the sense
of the number of basic structures because we did not perform a full search of the
graph space. Therefore it may be possible to reduce the area more with a more ef-
ficient ReMB structure. Moreover, the use of basic structure 1-2s in VLSI design
doesn’t provide the best area results as proved by Fig. 33(b).

The decrease in the critical path delay for the FPGA implementations was due to
the reduced logic depth of the multiplier. Here, the extra multiplexer stages between
adders did not contribute to the delay. However, for ASIC implementations, the crit-
ical path delay is increased a little due to the multiplexers. The reduced logic depth
of the adder network in the multiplier avoided a large increase in the delay. Reduced
logic depth also contributes to lower power since fewer glitches are produced.

If pipelining was considered, the delays associated with all implementations would
be similar. Even. then, the area of the ReMB filter would be the smallest because of
the addition of the same amount of latches or flip-flops to all of the filters.
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Table 5 Area and delay figures from the filter implementations

Filters FPGA implementations ASIC implementations

(Virtex XCV300) (UMC 0.18um CMOS)

Figure 32(a) Figure 32(b) Figure 32(a) Figure 32(b)
Area (comb. Logic) 223 LUT 190 LUT 1637 gates 1394 gates
Area (D Flip-Fops) 61 FF 55 FF 380 gates 339 gates
Delay 27.3 ns 23.6 ns 6.52 ns 7.17 ns

Table 6 Area and delay figures for custom implementations

Filters Multiplier area Delay Power
(transistor count) (ns) (uW at 62.5 Msamples/sec)

Reference filter 5138 4.1 340.9

Figure 32(a)

ReMB filter 4058 43 447.8

Figure 33(a)

ReMB filter 2342 2.1 208.1

Figure 33(b)

Another set of implementations has been compared in [19] where the filters in
Fig. 32 were implemented in custom VLSI design using 0.18um UMC technology.
In this experiment, all the components including the memory elements were designed
in custom. The general-purpose multiplier used in Fig. 32(a) was a Pezaris multiplier.
Both of the ReMB designs given in Fig. 33 are implemented in Fig. 32(b). Table 6
compares the three implementations for their area, power, and delay. The area and
delay values for the reference filter and the ReMB filter using Fig. 33(a) shows the
same trend as in Table 5. The power consumption figures reveal that although the
area figure is a bit smaller, the ReMB block that has been designed to efficiently suit
an FPGA does not provide power reduction when implemented as ASIC. The second
ReMB implementation, on the other hand, which was designed for VLSI by using the
balanced basic structure 2-2s, has the best area, delay and power figures.

It should be noted that the above power consumption figures for the custom VLSI
design do not necessarily reflect the situation in the FPGA implementation, because
the multiplexer is invisible in the LUT and the transitions that occur at the output of
the multiplexer do not exist in the FPGA implementations.

9 Conclusion

All types of filters and filter banks where multiple constant multiplications are de-
ployed.in a time-multiplexed fashion can benefit from the ReMB technique to reduce
the complexity of the multiplication and hence delay and possibly power.
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In this paper, we mainly concentrated on the area and delay efficiency ReMB can
offer; however, it is also highly likely that fewer operations and simplified hardware
would lead to lower power consumption. This is a topic of further investigation.

We have also laid out the theoretical concepts to enable the use of the technique
in the most effective way and to expose the pros and cons associated with different
implementation platforms. The algorithm presented forms a solid basis for further
design automation.

Although the ReMB technique is suitable for implementation using the currently
available standard cell libraries, the design and development of dedicated basic struc-
tures for custom VLSI designs resulted in significantly better area/power/delay fig-
ures.

In conclusion, we would like to state that ReMB can be of great benefit to many
real-time specialized DSP applications where area, delay and power are of impor-
tance.
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